

OBJECT TRACKING USING AUTONOMOUS QUAD COPTER

Carlos A. Munoz, Sarosh Patel and Tarek Sobh

Abstract

To have a quad copter autonomously catch

(tap) an object by receiving XYZ coordinates
given by means of object detection using two
cameras. This will be tested in a two-step
process. First test is done on a flat surface (table)
and the second test is done in the air.

Keywords autonomous tracking; image

processing; object detection; quad copter

Introduction

The goal of this work is to create a program
that can attempt to simulate a catcher. This will
be attempted using a quad copter “Figure 1” that
will mimic the action of a catcher. The idea came
from watching kids always playing by themselves
throwing the ball at a wall or in the air and having
to go and get the ball themselves. What if we
could use a “bot” to pick the ball up or hit the
ball back automatically based on the location of
such a ball? This could be useful in areas like
golf, where “bots” could be sent to pick up all the
golf balls and return them back to a central
location. Or a concept for a bot that acts like a
dog and catches the ball in the air. The objective
of this work is to show a way of acquiring such
a feat.

Figure 1. Quad copter used in this work.

Related Work

The very first place where this idea came from
was from a segment in TEDGlobal, by Raffaello
D’Andrea [1] called “The astounding athletic
power of quadcopters”. Here he explains how
we can use and manipulate quad copters to our
advantage; how they can be agile and swift to
fulfill our needs without sacrificing performance
and with redundancy capabilities. Another piece
that inspired this paper was the work done by
Armin Ambühl [2]. In his experiment, he
manipulates quad copters using a Kinect as a
guidance tool. His work was also supervised by
Raffaello.

In today’s world, autonomous quad copters are

being utilized more often as cheaper more
efficient alternatives. The Olympics [3] are a
good example. In the past, helicopters were used
to get the “perfect angles” during competitions.
In the recent Olympics it was all done by quad
copters. The route and length of time is set up per
quad and off they go to get the same angles that
the helicopters did at a much cheaper price.

There are even some future jobs that could

potentially be replaced by quad copters such as
firefighters [4] and delivery of Amazon packages
[5] just to name a few.

In this work, there are three main items that

are used in conjunction to achieve the end result.
These parts are one quad copter made by 3D
Robotics [6] and two Kinects [7] made by
Microsoft. The quad copter contains four motors
with four blades. Two blades spin counter
clockwise and two that spin clockwise. There are
4 Electronic Speed Controllers (ESC’s) that
govern the speed of the motors. The quad also
comes with a power distribution board, a battery
(4200mAh) and an auto pilot module (APM) that
when combined with the GPS can achieve
autonomy via setting a route on a map for the
quad to go and come if need be. There is also a

telemetry radio module that is constantly sending
information (altitude, speed, location battery
level, etc.) from the quad to the pc and another
telemetry radio on the pc connected via USB that
sends pitch, jaw, and roll alterations to the quad.
They are both send/receive modules.

B. Kinect

The Kinect cameras “Figure 2” are made by
Microsoft. They contain three main functions.
There is a depth stream that is mainly used to
give an approximation on how far an object is
from the Kinect. There is also a skeleton tracking
module that is mainly used to detect humans in
front of the Kinect. There is also a regular color
stream (RGB) that can be use like a regular
camera. The camera’s color stream feature is
what it is used to gives us the XYZ-coordinates
that are needed.

Figure 2. Microsoft Kinect Camera.

C. Quad Copter

The quad copter can be controlled in different

ways. The usual way would be by purchasing an
actual radio controller. The controller acts as the
transmitter and an additional receiver is attached
to the quad copter. The movements are then sent
by the radio controller and the signals are received
by the receiver. The receiver is connected to the
Arduino board and in turn it sends the info to the
corresponding ESC’s.

Another way of controlling the quad copter is

by using your own USB controller. This
controller is then selected under the Mission
Planner’s [8] settings options. Once the controller

(via the drop box) is selected then calibrated, the
user can control the quad this way.

There are some noticeable and worthy of

mentioning differences in these two approaches.
Using the first option, a computer is not needed
at all and is more responsive since it is a one-way
communication route. With the second option, a
computer is needed at all times. This is because it
needs to be the middle man in sending and
receiving the signals using the telemetry radios.
One telemetry module is connected on the quad
copter while the other module is connected on the
pc via USB. The signal is sent from the controller
to the pc. The Mission planner software takes the
signal and sends it from the USB radio to the radio
on the quad copter. The communication can fail
if the computer is turned off or if the radio is
unplugged.

For this particular scenario, the second option is

used. The reason for that is in the way the created
custom program sends signals to the quad. After
the location of the ball is acquired and the
expected location of the ball is calculated, the
location of the quad is also calculated then this
information is sent to the quad. This new location
for the quad copter is simulated by mapping the
keys of the controller and thus setting the location
as accurately as possible.

Autonomy and Tracking Comparison

Autonomy and object tracking has been

implemented in other products that are used
widely in our daily lives. Google has the famous
driverless car powered by their software called
Google Chauffeur [9]. This vehicle contains a
360 degree beam laser that continuously creates
a 3d map of its surroundings that it then
compares with a world map which allows it to
drive itself. The vehicle is not allowed to drive by
itself in all states yet as the bill for each state has
not been passed. Currently it works under
Nevada, Florida, California and Michigan to
name a few. China’s pollution is troublesome for
productivity. They use a drone that “features
autonomous navigation controls that allow it to
fly in even the heaviest smog conditions to

disperse the smog” [10]. In case of a malfunction,
the drone also deploys a parachute allowing it to
land safely. This is also part of the internal logic.
Lastly, France uses surveillance drones [11] to
spy on al Qaeda. These drones do rounds of flight
acquiring data that is then processed to detect
humans among other things.

These three examples are much more

complicated and contain more features than what
the scope of this work is demonstrating, but it can
be clear that object recognition combined with
autonomy is the future for most labor intensive
tasks and high risk jobs.

Methodology

The work is broken into four main modules. The

first part is to simply grab the latest image from
the two Kinects. The second module checks to
see if the object that we want to track is in the
images that we grabbed. If the objects are not
found then we just simply discard the images and
get new ones. In the third module, we first check
if the primary object (the ball) is within an initial
distance from the quad. If it is, then a few
milliseconds later, we take another image and use
them both to acquire the expected trajectory. This
trajectory is then sent to the quad that will in turn
intercept the object. These are the basics of the
work as show in Figure 3.

Figure 3. Basic flow of the work.

A. Flow in Detail

The first thing that happens is that the Color
Stream [12] of each Kinect is enabled and added
to event handlers. These event handlers are
raised whenever there is an available frame to be
processed. At the initial stage, the object that is
desired to be detected needs to be added to the
program. The sliders; six in total, represent the
lower bound and upper bound of the values of
each hue, saturation and value (HSV)[13] of the
image that is presented. These sliders, shown in
Figure 4, are then moved one by one in order to
remove the background intensity and just show
the object that needs to be tracked. The way that
the addition is done takes place the moment that
the button labeled “Object1” is pressed. Now the
values are stored in the program and used to track
only that particular object for the remainder of the
program unless a new object gets inserted.

Figure 4. (Six sliders, two for each HSV upper
and lower limit values)

Each new frame is then used to see if the object

has been detected. The stream is first captured,
stored into a byte array and then converted to a
bitmap. This bitmap is then changed to a grey
image using the bounding values from the stored
HSV’s and shown for debugging purposes. This
same gray image is then used to find contours
within it based on Open Source Computer Vision
documents (Open CV) [14]. If a bounding
rectangle is found within our threshold then a
square is drawn on the object to show that it
has been detected in the grey image that was
originally created. This is shown in Figures 5 and
6. Finally, the x and y coordinates of one camera
and the x coordinate of the second camera (used
as the z coordinate for the first camera) are shown

on the screen to give a visual representation of the
location of the object while in the air.

Figure 5. Above left (ball detection in the given
frame) Figure 6. Above right (ball found, box
implies detection)

Image Processing

The images gathered by both Kinects are taken
as raw 30 fps color streams. These are then
converted to images of type CV. These images
are then converted to the HSV color space. The
reason that HSV color space is used instead of
RGB is because working with intensity values in
the HSV space is much easier and yields much
better results at background noise/color
separation than RGB. Once the HSV upper limit
and lower limit have been obtained, a gray image
gets created based on those two 3 pair values (3
for upper and 3 for lower).

Now that only the intensity of the ball exists in

the image, we can start looking for shapes
(contours). Rectangles are extracted using
boundaries for height and width. If rectangles are
detected then the object that we are trying to
locate has been found and it is shown with the
filled rectangle on the screen. This is the
approach used over and over per frame to attempt
accuracy on the location of the object while
moving in the space provided.

A. Object Detection

One thing to note is that the recognition of the

object works best if done by intensity rather than
color (RGB). Using the HSV values (hue,
saturation, and value) the objects can be added to
the array of objects that are going to be

searched. Each one is added using the visual box
in the program. The image that is initially black
and white, shows the pictures in real time and by
sliding each value, the object becomes more
apparent (stays white) while the background
fades (goes to black).

These values are essential and they need to be

as accurate as possible since they are used in
combination with the threshold value to
determine if the object that we are tracking is in
the frame that is being grabbed from the camera.
Most of the code to achieve this is done using

emgu
1 libraries for the C# language.

B. Threshold values

These values can be tweaked and they are

based on the HSV values of the object that is
going to be tracked. At the beginning of the
program, the user can see a rectangle showing the
object being tracked after the values have been
stored. This rectangle only shows if the threshold
value satisfies the range (set up distance value for
the object).

C. Coordinates

The coordinates of the objects are represented
in XYZ values. Two of the values (X and Y) are
given by the first camera. The third value (Z) is
given by the second camera (its own X value).

The example of a top view (2
nd camera) is shown

in Figure 7. For the first test only the X and Y
value are used since the ball is rolled on the
table. For the second test all three values are
used. These values are in relation to the size of
the ImageBox [15] used in C#. The real values
have to be calculated based on the distance of the
camera in relation to the ball and the quad copter.
These values will also vary depending on the
distance of the quad from the person.

The calculation sampled in this work is as

follows. New images are being processed every
single time that the event raises. The image is
checked to see if the object is detected. If it is then
an XYZ coordinate is saved. Then on the next

event a second XYZ is taken. If the second X
value is not closer to the copter, the values are
cleared and the process starts over. If the X value
is closer to the copter then it continues with the
rest of the algorithm to create the new XYZ
coordinate where it thinks the ball will go.

Figure 7. Showing second camera top view with
same coordinates.

An example of the many possible trajectories is
shown in Figure 8. The stripped rectangle
represents the area of the copter. The vertical
rectangles show the vertical displacement at two
different time intervals. The known values are the
two locations of the ball at, t1(x1, y1) and t2(x2,
y2).

The t value is in seconds. The first two things
that are calculated are the initial vertical velocity
and the initial horizontal velocity. The formulas
used to calculate these two values are:

Vx = x/t (1)
Vy = (y/t) – 0.5*g*t (2)

The values of x and y are given at time t. The
same x and y are used for both “(1)” and “(2)”.

Figure 8: One of many possibilities in a 2d
trajectory model. Vertical displacement indicated
by the lines. The rectangle indicates the range of
the copter.

Finally for the variable g, -9.8m per second is
used because it is low gravity and the negative
sign is due to force bringing the ball down. The
next calculation involves getting the horizontal
displacement at various intervals. Doing the first
eight seconds is more than enough since the total
distance for this demo is about 3 meters. This can
be changed if more distance is needed but the
formulas stay the same.

While calculating all eight seconds, the

program looks for the t that gets within 0.25 (1
foot) meters from the copter. If it finds one then
it does the calculation for that particular t to find
the vertical displacement. These numbers are
used to determine if the ball is reachable and that
takes care of the two dimensional side of the side
camera. The top camera takes care of the Z value.

This value is simply created using the distance

formula.

dx = t2x – t1x (3)
dy = t2y – t1y (4)

Do the square of the distance between dx and dy:

(dx2 + dy2) * k2 = tfinal (h) (5)

Solve for k then get the final point:

x3 = x1 + t1x + dx*k (6)

y3 = x1 + t1y + dy*k (7)

Since t1 and t2 have been recorded, the t1 and t2
Z values were recorded as well. For “(3)” and
“(4)” these values are used. For “(5)”, the t final
is used to calculate the “k” value and using that
“k”, “(6)” and “(7)” are calculated and the final
Z value is obtained. Remember that the same
final t value that was previously used on the
horizontal displacement is what is used to
determine the final Z value. Keep in mind that
instead of worrying if the ball will reach the
copter, the program could have been done
differently and the horizontal range could had
been extended to further cover more ground and
increase the potential of catching the ball.
Approaching it in this manner would have had
required a little bit more testing.

Once this is all calculated, a new location is
created for the quad copter and the signal is sent
for it to move to intercept the ball. The prototype
catcher is shown on Figure 9.

Figure 9. Catcher Prototype.

Results

After much trial and error, the results were good
for the most part. The calculations are correct on
paper. The trajectory of the ball when it is thrown
at a moderate rate and the new location where the
quad copter is going to be is also calculated
correctly. The frames per second are around 30

fps. That means that there is enough information
in our possession to obtain the results that we
need. It seems that the combination of air
resistance and lag between the radios could cause
a “miss” of the quad catching the ball. Increasing
the z distance from the main camera to the quad
copter gave much better results.

Limitations

There are some limitations that became

apparent while doing this work. The first problem
in no particular order is the cameras. For the work
done here, two Kinects were used to add to the
challenge. These devices require a conversion
from Color Stream (Kinect’s way of seeing
things) to bitmap. This could be eliminated if
regular cameras were utilized. The second
problem is light. Light plays an important role in
the object recognition part. The same object can
be missed if the lighting condition changes due to
time of day or simply light bulb change. It is
recommended that a calibration be done before
every demonstration. Another limitation is the
similarity of surrounding objects. Although
different shades of a certain color have different
HSV values, it is recommended that no other
objects of similar color are near the test in order
to minimize error. The third problem deals with
the range that the ball can go. If the ball is thrown
too hard the cameras can have a difficult time
acquiring the position of the ball. Although a safe
range has been hard coded to minimize
problems, not every speed has been tested.

Finally, lag. There might be a lag between the

computation of the object and the delivery of the
coordinate to the quad copter. This is why a
prediction of the final coordinate is used that is
based on the value of the ball before the midpoint
of the z distance between the main camera and the
quad copter.

Conclusion

In this paper, the implementation of an

autonomous quad copter was implemented to
capture an object. Calculations to make a quad
copter behave like a human and intercept an

object is just one very small example of what
autonomy can do and how it will impact us in the
not so distant future. Great things are possible and
hopefully this example can benefit and inspire
someone to take this work and expand it to the
next level. More information including videos
and pictures can be found at https://sites.
google.com/site/carlosmrobotics/home

References

1. Raffaello D’Andrea http://www.ted.com/
talks/raffaello_d_andrea_the_astounding
_ athletic_power_of_quadcopters.html

2. Armin Ambühl https://www.youtube.com

/watch?v=A52FqfOi0Ek&noredirect
=1

3. Olympics Drone http://news.yahoo.com/

sochi-drone-shooting-olympic-tv-not-
terrorists-152517775.html

4. Firefighter Drones http://gizmodo.com/

dubais-turning-drones-into-firefighters-
1505685714

5. Amazon drone http://www.cnn.com/2013

/12/02/tech/innovation/amazon- drones-
questions/

6. Quad copter http://store.3drobotics.com

/products/apm-3dr-quad-rtf

7. Microsoft Kinect http://www.microsoft.

com/en-us/kinectforwindows

8. Mission Planner http://planner.ardupilot

.com/

9. Google car http://www.popsci.com/ cars

/article/2013-09/google-self- driving-car

10. China Smog http://mashable.com/2014/

03/11/china-tests-autonomous- smog-
busting-drone/

11. France drones http://mashable.com/2013/
12/20/france-american-drones-al- qaeda-
mali/

12. Kinect COLORSTREAM property http://

msdn.microsoft.com/en-us/library/
microsoft.kinect.kinectsensor.colorstrea
m.aspx

13. HSV color space http://www.dig.cs.gc.

cuny.edu/manuals/Gimp2/Grokking-the-
GIMP-v1.0/node51.html

14. EMGU wrapper for open CV

http://www.emgu.com/wiki/index.php/M
ain_Page

15. ImageBox http://msdn.microsoft.com/ en-

us/library/system.windows.forms.picture
box(v=vs.110).aspx

Editor Note

This paper is a revised version of a paper with
the same title presented at the 2014 American
Society of Engineering Education (ASEE) Zone I
Conference.

The authors are faculty members in the

Interdisciplinary Robotic, Intelligent Sensing &
Control Laboratory at the University of
Bridgeport.

